Bibliography / References (updated as of June 2019)

Hsieh TC, Mensah MA, […] Krawitz PM (2019) PEDIA: prioritization of exome data by image analysis. Genetics in Medicine


Pascolini G, Fleischer N, Ferraris A, Majore S, Grammatico P. (2019)  The facial dysmorphology analysis technology in intellectual disability syndromes related to defects in the histones modifiers.  Journal of Human Genetics, SN-1435-32X

Mishima H,  Suzuki H, Doi M, Miyazaki M, Watanabe S, Matsumoto T, Morifuji K,  Moriuchi H,  Yoshiura K, Kondoh T, Kosaki K. (2019)  Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan.  Journal of Human Genetics 1435-232X

Bayat A, Knaus A,Wollenberg A, Dukic D,  Gardella E, Charzewska A, Clement E, Hjalgrim H, Hoffman-Zacharska  D, Horn D, Horton R, Hurst JA, Josifova D, Larsen L, Lascelles K, Obersztyn E, Pagnamenta A, Pal DK, Pendziwiat M, Ryten M, Taylor J, Vogt J, Weber Y, Krawitz Peter, Helbig I, Kini U, Møller RS, the DDD Study Group (2019)
PIGT-CDG, a disorder of the glycosylphosphatidylinositol anchor: description of 13 novel patients and expansion of the clinical characteristics.  Genetics in Medicine SN – 1530-0366,
DO – 10.1038/s41436-019-0512-3

Carli D, Giorgio E, Pantaleoni F, Bruselles A, Barresi S, Riberi E, Licciardi F, Gazzin A, Baldassarre G, Pizzi S, Niceta M, Radio FC, Molinatto C, Montin D, Calvo PL, Ciolfi A, Fleischer N, Ferrero GB, Brusco A, Tartaglia M. (2019) NBAS pathogenic variants: Defining the associated clinical and facial phenotype and genotype–phenotype correlations. Human Mutation. 2019; 1– 8.


Marbach F, Rustad C, Riess A,Netzer C. (2019) The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial PhenotypingAm J Hum Gene https://doi .org/10.1016/j.ajhg.2019.02.021


Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, Basel-Salmon L, Krawitz  PM, Kamphausen SB, Zenker M, Bird LM, Gripp KW. (2019) Identifying rare genetic syndromes using deep learning. Nature Medicine 25, pages 60–64 DOI:10.1038/s41591-018-0279-0


Martinez-Monseny A,Cuadras D, Bolasell M, et al. (2018) From gestalt to gene: early predictive dysmorphic  features of PMM2-CDG J Med Genet  doi:10.1136/jmedgenet-2018-105588


Shia W, Chena Y, Chena S, Lia S, Changa C, Zhanga L, Feia H, Huanga H, Zhanga J, Xua C,(2018) Integrated facial analysis and targeted sequencing identifies a novel KDM6A pathogenic variant resulting in Kabuki syndrome. Journal of Bio-X Research 1:140–146

Amudhavalli SM, Hanson R, Angle B, Bontempo K, Gripp KW. (2018)  Further delineation of Aymé‐Gripp syndrome and use of automated facial analysis tool. Am J Med Genet Part A.2018;176A:1648 1656


Vorravanpreecha N, Lertboonnum T, Rodjanadit R, Sriplienchan P, Rojnueangnit K, (2018) Studying Down syndrome recognition probabilities in Thai children with de‐identified computer‐aided facial analysis American Journal of Medical Genetics  Am J Med Genet Part A2018;1–6.


Jiang Y, Wangler MF, McGuire Al, Lupski JR, Posey JE, Khayat MM, Murdock DR, Sanchez‐Pulido L, Ponting CP, Xia F, Hunter JV, Meng Q, Murugan M, Gibbs RA (2018) The phenotypic spectrum of Xia‐Gibbs syndrome Am J Med Genet, V176, I 6, P1315-1326 doi: 10.1002/ajmg.a.38699


Ferreira, CR; Altassan, R.; Marques-Da-Silva, D; Francisco, R.; Jaeken J.; Morava E.; Recognizable phenotypes in CDG  J Inherit Metab Dis (2018).


Pantel JT., Zhao M., Mensah MA., Hajjir N., Hsieh TH., Hanani Y., Fleischer N., Kamphans T., Mundlos S., Gurovich Y,  Krawitz PM. Advances in computer-assisted syndrome recognition by the example of inborn errors of metabolism J Inherit Metab Dis (2018). ttps://


Armand T,.(2018) Étude phénotypique de 189 patiets exposés en antenatal a l’acide Valporique. These PhD en medicine, présentée à l’Université Claude Bernard Lyon, France.


Zarate YA,Smith-Hicks CL, Greene C, Abbott MA, Siu VM, Calhoun AR, Pandya A, Li C, Sellars EA, Kaylor J, Bosanko K, Kalsner L, Basinger A, Slavotinek AM, Perry H, Saenz M, Szybowska M, Wilson LC, Kumar A, Brain C, Balasubramanian M, Dubbs H, Ortiz-Gonzalez X, Zackai E, Stein Q, Powell CM,,Schrier VS, Britt A, Sun A, Smith W, Bebin EM, Picker J, Kirby A, Pinz H, Bombei H, Mahida S, Cohen J, Fatemi A, Vernon H, McClellan R, Fleming L, Knyszek B, Steinraths M, Velasco C, Beck A, Golden-Grant KL, Egense A, Parikh A, Raimondi C, Angle B, Allen W, Schott S, Algrabli A, Robin NH, Ray JW, Everman DB, Gambello MJ, Chung WK; Natural history and genotype-phenotype correlations in 72 individuals with SATB2-associated syndromeAm J Med Genet Part A2018;1–11. DOI: 10.1002/ajmg.a.38630


Knaus A, Pantel JT, Pendziwiat M., Hajjir,  Zhao M., Hsieh TC,  Schubach M, Gurovich Y, Fleischer N, Jäger M, Köhler S, Muhle H, Korff C, Møller RS, Bayat  A, Calvas P, Chassaing N, Warren H, Skinner S, Louie R, Evers C, Bohn M, Christen HJ,1 van den Born M, Obersztyn E, Charzewska A, Endziniene M, Kortüm F, Brown N, Robinson PN, Schelhaas HJ,  Weber Y, Helbig, I, Mundlos S, Horn D , Krawitz PM (2018) Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med. 2018; 10: 3. DOI:  10.1186/s13073-017-0510-5.


Valentine M., Bihm D.C.J., Wolf L, Hoyme H.E., May P.A., Buckley D., Kalberg W., Abdul-Rahman O. (2017) Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders . Pediatrics Nov 2017, e20162028; DOI: 10.1542/peds.2016-2028.


Liehr T, Acquarola N, Pyle K, St-Pierre S, Rinholm M, Bar O, Wilhelm K, Schreyer I. (2017) Next generation phenotyping in Emanuel and Pallister Killian Syndrome using computer-aided facial dysmorphology analysis of 2D photos. Clin Genet. 2017 Jun 29. doi: 10.1111/cge.13087.


Hadj-Rabia S, Schneider H, Navarro E, Klein O, Kirby N, Huttner K, Wolf L, Orin M, Wohlfart S2, Bodemer C, Grange DK. (2017) Automatic recognition of the XLHED phenotype from facial images. Am J Med Genet A. 2017 Sep;173(9):2408-2414. doi: 10.1002/ajmg.a.38343. Epub 2017 Jul 10.


Chiu Annie T.G.,  Zhu  Lixing, Gary T.K. Moka, Leung G K.C. , Chowa, C.B. Chung Brian H.Y.  (2016) Before and after – Nutritional transformation of dysmorphism in a case of Costello, Eur J Med Genet. 2016 Nov;59(11):573-576.


Gardner OK, Haynes K, Schweitzer D, Johns A, Magee WP, Urata MM, Sanchez-Lara PA. (2016) Familial Recurrence of 3MC Syndrome in Consanguineous Families: A Clinical and Molecular Diagnostic Approach With Review of the Literature.  Cleft Palate Craniofac J. 2016 Jun 29. DOI: 10.1597/15-151.


Gripp KW, Baker L, Telegrafi A, Monaghan KG.(2016) The role of objective facial analysis using FDNA in making diagnoses following whole exome analysis. Report of two patients with mutations in the BAF complex genes. Am J Med Genet A. 2016 Apr 26.


Kayembe KT., Kasole LT, Mbuyi-Musanzayi S, Kabamba NL, Katshiez Nawej C, Musa Obadia P, Banza Lubaba Nkulu C, Nemery B, Devriendt K.. (2016), Microtia in Cornelia de Lange syndrome: a case from Democratic Republic of the Congo. Clinical Dysmorpholgy 2016 Oct;25(4):178-8.


Lumaka A, Cosemans N, Lulebo Mampasi A, Mubungu G, Mvuama N, Lubala T, Mbuyi-Musanzayi S, Breckpot J, Holvoet M, De Ravel T, Van Buggenhout G, Peeters H, Donnai D, Mutesa L, Verloes A, Lukusa Tshilobo P, Devriendt K.(2016),Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator Clin Genet. 2016 Dec 7.


Lumaka A, Lukoo R, Mubungu G, Lumpala P, Mbayabo G, Mupuala A, Lukusa Tshilobo P, Devriendt K., (2016) Williams-Beuren syndrome: pitfalls for diagnosis in limited resources setting.  Clinical Case Reports 2016 4(3):294-297.


Basel-Vanagaite L, Wolf L, Orin M, Larizza L, Gervasini C, Krantz ID, Deardoff MA. (2016) Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. Clin Genet. 2016 May;89(5):557-63.

Face2Gene User Community Includes Users From:

  • Using Face2Gene to reference all my department’s cases, share information with my colleagues and quickly look up relevant information in the London Medical Databases Online saves me hours of work every week and allows me to focus on my patients.

    Dr. Ibrahim Akalin

    Assoc. Prof. Ibrahim Akalin, MD, Medical Geneticist from the Istanbul Medeniyet University, Istanbul, Turkey

  • FDNA’s game-changing technology introduces an objective computer-aided dimension to the “art of dysmorphology”, transforming the analysis into an evidence-based science.

    Dr. Michael R. Hayden

    Chairman of FDNA’s Scientific Advisory Board & Steering Committee and Editor in Chief of Clinical Genetics

  • FDNA is developing technology that has the potential to help so many physicians and families by bringing them closer to a diagnosis- there are literally millions of individuals with unusual features around the world that lack a diagnosis and therefore lack information on natural history, recurrence risk and prevention of known complications.

    Dr. Judith G. Hall

    Professor Emerita of Pediatrics & Medical Genetics UBC & Children's and Women's Health Centre of BC

  • FDNA has been “right on the money”, providing me with relevant, accurate and insightful information for differential diagnoses.

    Dr. Cynthia J.R. Curry

    Professor of Pediatrics UCSF, Adjunct Professor of Pediatrics Stanford

  • I am excited to be a part of the FDNA community, promoting broad information sharing with my peers to amplify the scientific and clinical value of our community’s accumulated knowledge for the purpose of efficiently diagnosing individuals with rare genetic disorders.

    Dr. Karen W. Gripp

    Chief, Division of Medical Genetics A.I. duPont Hospital for Children

  • FDNA's idea of incorporating several dysmorphology resources (OMIM, GeneReviews), supported by their visual analytic technology, will be able to improve researching of genetic syndromes - all within a single mobile app.

    Dr. Chad Haldeman-Englert

    Assistant Professor Pediatrics at Mission Fullerton Genetics

  • Given the advancement of visual analytical technology, it’s about time Dysmorphology is supported with computational capabilities and moving this to mobile support, is simply the next logical step.

    Dr. Chanika Phornphutkul

    Associate Professor of Pediatrics Director, Division of Human Genetics Department of Pediatrics Warren Alpert Medical School of Brown University

  • Having an archive of cases easily accessible from my mobile device anytime and anywhere is a long-time unmet need.

    Dr. Lynne Bird

    Rady Children's Specialists of San Diego

  • FDNA's solution is a huge leap forward for dysmorphology. It saves me significant time when I’m evaluating patients in my clinic and provides me with insightful tools that help me generate a differential diagnosis.

    Dr. David A. Chitayat

    Head of the Prenatal Diagnosis and Medical Genetics Program at Mount Sinai Hospital, Toronto

  • Shortly after learning about Face2Gene, I’ve started to incorporate this amazing tool into my workflow. Soon enough, Face2Gene’s analysis flushed out references that I would not have considered for several of my patients, which turned out to be their correct diagnosis

    Dr. Zvi U. Borochowitz

    Chairman (Retired) of The Simon Winter Institute for Human Genetics at Bnai-Zion Medical Center, Technion-Rappaport Faculty of Medicine

  • The Unknown Forum from Face2Gene is a great community platform for exchanging opinions regarding undiagnosed cases. It is straightforward to use and safe for exchange of medical data, thanks to the efforts of its developers and to the involvement of geneticists worldwide.

    Dr. Oana Moldovan

    Clinical Geneticist at the Hospital Santa Maria, CHLN, Lisbon, Portugal