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Summary
Next-generation phenotyping (NGP) technologies capture, structure, and analyze complex phenotypic 
information to produce actionable genomic insights. DeepGestalt is an NGP technology that currently 
supports more than 300 specific genetic syndromes and syndrome groups, representing 45% of cases 
solved by WES. Next-generation sequencing (NGS) augmented by NGP results in more efficient and 
accurate diagnoses.

In this study, we show that:
•    Integration of NGP in the variant analysis workflow dramatically increases diagnostic yield and 

efficiency as compared to traditional methods of variant prioritization, placing causative genes in ≤ 
5th rank in 50% of cases;

•    NGP increases the number of top-ranked causative genes in both “easily solved” and “challenging” 
cases, with an overall improvement in ranking across all cases;

•    NGP ranking among cases supported by DeepGestalt is even more impressive, showing 67% 
ranked in the top 5, compared to 11% based on GGC and CADD ranks;

•    NGP may enable prioritization of causative variants independent of parental data, decreasing costs 
by reducing the need to complete parental WES and increasing diagnostic yield by enabling 
diagnosis of cases where parental samples are unavailable;

•    Expanding NGP analysis beyond the face (brain MRIs, skeletal radiographs, fundoscopy) will 
increase the amount of syndromes supported.

Introduction and background
Exome sequencing results in a vast set of possibly-relevant variants which must be filtered and 
prioritized. With the recent introduction and increasing use of clinical genome sequencing, this 
challenge will only increase (Lionel et al, 2018, Smith et al, 2019). In some settings, NGS is accessible 
enough that it has become a good initial testing option (avoiding the costs associated with a series of 
stepwise tests), but variant interpretation and clinical correlation require the integration of rich 
phenotypic data. The use of patient phenotypic data is an essential annotation to support variant 
prioritization and filtering, enabling variant analysts to more efficiently identify possibly relevant 
variants. More than ever, next-generation sequencing (NGS) requires next-generation phenotyping 
(NGP) (Hennekam, Biesecker 2012).

Meanwhile, in settings where exome or genome analysis is not easily accessible, the ability to target 
and prioritize analysis of specific genes based on phenotypic presentation for targeted gene panels is 
even more important.  

In 2014, FDNA launched the Face2Gene (F2G) application (FDNA, Inc., USA), which leverages an NGP 
analysis of various phenotypic signals.  The facial analysis technology is called DeepGestalt.  As 
described by Gurovich et al (2019), the DeepGestalt technology uses deep learning convolutional 
neural networks to measure similarities between patient photos and hundreds of syndrome models.  
Based on an input of 2D frontal facial photographs, clinical notes, and/or HPO phenotypic features 
(Robinson et al 2014), F2G presents clinicians with a list of the 30 best-matched syndromes for
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consideration.  The use of F2G’s automated facial analysis is useful in different stages of the diagnostic 
workup, including establishing a differential or clinical diagnosis (Basel-Vanagaite et al. 2016; 
Martinez-Monseny et al., 2018), ordering the most relevant genetic test (Liehr et al., 2017), and 
making a diagnosis following exome analysis (Gripp et al. 2016). Its value has been demonstrated in 
varying ethnicities (Vorravanpreecha et al, 2018; Pantel et al, 2018; Mishima et al., 2019).

DeepGestalt is currently trained to support about 45% of the cases diagnosed in a series of 
consecutive exome cases (as listed in “Supplemental Table 1” in Retterer et al. 2016).  In cases for 
which DeepGestalt has not been trained yet, syndrome suggestions can be derived through other 
tools, such as feature matching based on HPO feature extraction from free text. Additional NGP tools 
utilizing MRI, radiographs, and fundoscopy are under development (Hanani et al. 2019).

The results of NGP analyses such as F2G’s facial analysis can be integrated efficiently into the variant 
interpretation process, enabling prioritization of variants and genes with the strongest phenotypic 
relevance. The PEDIA algorithm (Hsieh et al. 2019) is the first framework to integrate NGP scores with 
molecular data for variant prioritization. A recent retrospective study showed the PEDIA algorithm 
added value to the diagnostic yield of a cohort of 679 patients with 105 different monogenic disorders 
(Hsieh et al. 2019), improving the top-1 accuracy rate for the disease causing gene to 89%. The 
top-10 accuracy rate is 99%.  This increased accuracy demonstrates that NGP results can be used 
similarly to deleteriousness scores on the molecular level. This could allow the “matching phenotype” 
PP4 criterion in the ACMG variant interpretation guidelines to move from a dichotomous assessment 
to a quantifiable score.  

Integration of NGP into the molecular diagnostic process greatly impacts diagnostic efficiency and 
yield. In this study, we evaluated the potential impact of using NGP in the analysis of NGS data. We 
focused on a retrospective set of 126 clinical WES cases from the Greenwood Genetic Center (GGC) 
Molecular Diagnostic Laboratory (SC, USA) which were either diagnosed or remain undiagnosed based 
on conventional variant analysis processes using a proprietary in-house pipeline. We applied NGP to 
each case and compared the traditional methods of variant prioritization to NGP-enriched variant 
prioritization. Based on this comparison, we assess how often the inclusion of NGP promotes 
improved diagnostic efficiency.

Methods
Cohorts
Retrospective data were provided for analysis by the Greenwood Genetic Center. Each case had to 
include a frontal facial photo consented for analysis in the F2G app, a selection of clinician-described 
clinical features (mapped to HPO), and a VCF for analysis. Cases were stratified into “solved” (N=57), 
“unsolved” (N=67), and 2 cases were excluded due to a diagnosis being made through means other 
than variant analysis from WES. Cases in the “solved” cohort included those for which the causative 
variant was identified using GGC’s conventional variant analysis process (GGC rank).   Cases were 
characterized based on whether they were easily solved or challenging.  Among the 57 diagnosed 
cases, 36 cases were considered “easily solved”, meaning that the diagnostic variant was identified 
easily and 21 cases were considered “challenging”.  Within the subset of “challenging” cases, 15 cases 
were defined as “challenging without analysis of parental samples”, meaning the variant was initially 
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identified as a result of analysis of parental samples and would not be easily identified if parental data 
was unavailable. Cases in the “unsolved” cohort were those which did not yet have a known causative 
variant.

Figure 1. Study cohort flow chart

Of the 57 diagnosed cases, 28 were diagnosed with a syndrome represented by a validated facial 
model in the Face2Gene app.

For cases in the “solved” cohort, known causative variants were provided. For 40 of the 57 solved 
cases, data indicating the number of variants evaluated by the GGC team before arriving at the 
causative variant (representing a GGC “rank”) was available.  For the remaining 17 “solved” cases, GGC 
rank data was not available.

Analyses
We generated NGP scores for the genes and variants in each “solved” case.  All cases were analyzed 
with Face2Gene algorithms, including the DeepGestalt and Feature Match algorithm.  These 
algorithms enabled ranking and scoring of syndromes based on facial gestalt (G score)  and feature 
similarity (F score), resulting in a ranked list of syndromes and a ranked list of genes based on known 
gene associations for each syndrome. Upon review of the VCF file, each variant within a given gene 
was assigned the associated G and F scores and ranks. 

Additionally, a CADD (C) score (Kircher et al., 2014) was generated for each variant. The CADD score 
combines several types of variant-specific data, and is often used as a gauge of the variant’s potential 
pathogenicity.  However, it does not consider relevance to the patient’s specific phenotypic 
presentation.  The CADD score per gene was calculated using the highest CADD score of the variants 
in that gene.

3



Finally, VCFs for each case were also analyzed using the PEDIA score (Hsieh et al, 2019), as an 
example for possible integration of G and F scores with molecular data. The PEDIA score integrates 
several datasets for each variant, including G and F scores, BOQA and Phenomizer scores (Koehler et 
al, 2009), and a CADD score. A PEDIA score is generated for each gene, using the CADD score from 
the variant in that gene with the highest CADD score.

Genes for each case were sorted according to the PEDIA score described above, giving each gene a 
PEDIA rank.  We then compared the PEDIA rank for the known causative gene to the original GGC 
rank for the causative variant (when available) and the CADD rank for the causative gene. (See 
Appendix 1 for example cases with their associated ranks.)

Results
Comparing PEDIA rank to GGC and CADD rank
PEDIA rank placed the causative gene in the first position in 11/40 cases (27.5%), ≤ 5th
position in 20/40 cases (50%). This was notably improved compared to the ranks based on GGC and 
CADD. Improvement was more dramatic for cases diagnosed with a syndrome represented by a facial 
model validated in the Face2Gene app (see Tables 1 and 2 and Figures 2 and 3).

Figure 2. ROC curves showing ranking of causative genes based on GGC, CADD, and PEDIA ranks for 
40 cases
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Figure 3. ROC curves showing ranking of causative genes based on GGC, CADD, and PEDIA ranks for 
18 cases with diagnoses supported by F2G facial models.

Table 1. Case ranking categories for 40 cases based on GGC, CADD, and PEDIA ranks.

Table 2. Case ranking categories for 18 cases with diagnoses supported by F2G facial models.
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Of the 40 “solved” cases for which GGC rank was available, PEDIA rank showed an improvement of ≥ 
1 position compared to the GGC rank in 19/40 cases (47.5%), and rank improved by ≥ 15 positions in 
7/40 cases (17.5%).  Among these 19/40 cases with improved PEDIA rank, the average improvement 
was 24.2 positions.

Of the total set of 57 “solved” cases, PEDIA rank versus CADD rank showed an improvement of ≥ 1 
position in 32/57 cases (56%) and rank improved by ≥ 15 positions in 19/57 cases (33%).  Among 
these 32/57 cases with superior PEDIA rank, the average improvement was 56.8 positions.

PEDIA Ranking for Cases Originally Requiring Analysis of Parental Data
For cases originally solved only after analysis of parental samples (N=15), PEDIA successfully placed 
the causative gene in the top 5 in 5/15 cases (33%) without parental data. Compared to the GGC rank 
(available for 12 of these cases), PEDIA rank showed improvement in 3/12 (25%), with an average 
improvement of 27.7 positions.

Discussion
These preliminary results clearly demonstrate the value of incorporating NGP in the variant analysis 
and prioritization process. The use of NGP dramatically increases diagnostic efficiency, as 
demonstrated by the increase in number of top-ranked causative genes in both “easily solved” and 
“challenging” cases, and the overall improvement in ranking across cases.  

Even for cases with relatively fast and easily identified candidate variants (as represented by the “easily 
solved” cohort), the ability to improve ranking slightly can have a significant impact on the efficiency of 
the variant analysis process. In fact, the implementation of incremental time savings will provide 
substantial additive value, as this cohort represents 25% of all WES cases.  Additionally, this 
demonstrates NGP’s strong ability to facilitate clinical correlation by quantifying the relationship 
between candidate variants and the individual patient’s phenotypic presentation.

The potential value-add from NGP is even more striking for challenging cases requiring more time and 
effort during variant analysis. Using NGP, variant analysis teams may dramatically decrease the time 
required to review each case, arriving at the causative variant more quickly.  

Finally, in cases resolved through analysis of parental samples, NGP may enable prioritization of 
causative variants independent of parental data. In this manner, laboratories may decrease costs by 
reducing the need to complete parental WES and increase diagnostic yield, by enabling diagnosis of 
cases for which parental samples are unavailable.

The impact of NGP, resulting in improved ranking of causative genes, is much greater among cases 
diagnosed with a syndrome that is supported by a facial model in Face2Gene. This demonstrates the 
strong impact and value-add gained from the use of facial analysis. The DeepGestalt facial analysis 
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technology currently supports more than 300 specific genetic syndromes and syndrome groups, 
representing 45% of cases solved by WES. Consistent with this, in this cohort of diagnosed cases from 
GGC, 45% had syndromes supported by DeepGestalt. However, DeepGestalt is just one form of NGP, 
and as additional forms of NGP analysis are developed, such as analysis of brain MRIs, skeletal 
radiographs, and fundoscopy images, the proportion of patients supported by these NGP technologies 
will increase dramatically. 

Conclusions
Integration of NGP into the variant prioritization process for a representative case cohort 
demonstrates significantly improved ranking of disease-causing genes and variants. 
•    PEDIA ranked the disease-causing variant first in 27.5% of cases, compared to 2.5% based on 

GGC rank and 7.5% based on CADD rank.
•    Compared to GGC rank and CADD rank, PEDIA resulted in a significantly improved rank (≥ 15 

positions) in 17.5% and 33% of cases, respectively.
•    Among cases which are diagnosed with syndromes supported by DeepGestalt facial analysis, 

PEDIA ranking is even more impressive, showing 67% ranked in the top 5, compared to 11% 
based on GGC and CADD ranks.

•    Even for cases easily solved by WES, incorporation of NGP increases diagnostic efficiency and 
facilitates prompt and accurate clinical correlation and reporting. 

•    Cases originally requiring parental samples for diagnosis benefited from NGP, potentially allowing 
diagnosis for such cases, even in the absence of parental samples.

NGP will dramatically increase efficiency in the molecular diagnostic process.
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Appendices
Appendix 1: Example cases showing improved rank with PEDIA
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